

Hsp90: an emerging target for breast cancer therapy

Jason Beliakoff^a and Luke Whitesell^b

Rapidly evolving insights into the specific molecular genetic abnormalities that drive the growth and metastasis of breast cancer have led to the development of targeted therapeutics that do not rely on the generalized disruption of DNA metabolism and cell division for activity. Of particular interest are inhibitors of cellular signal transduction pathways involving tyrosine kinases as well as selective modulators of steroid hormone signaling, histone acetylation, angiogenesis and tumor cell apoptosis. Unique within this array of promising new agents, however, are compounds that target heat shock protein 90 (Hsp90). This molecular chaperone associates with a distinct, but surprisingly diverse, set of proteins that are referred to as Hsp90 client proteins. Hsp90 binds to these clients, and plays a key role in regulating their stability and function. Many of the proteins chaperoned by Hsp90 are involved in breast cancer progression and resistance to therapy, including the estrogen receptor, receptor tyrosine kinases of the erbB family, Akt, and mutant p53. Several small molecule inhibitors of Hsp90 have been identified that can deplete cellular levels of multiple oncogenic client proteins simultaneously by enhancing their ubiquitination and proteasome-mediated degradation. The activity of Hsp90 inhibitors has been well validated in preclinical breast cancer models, both in single-agent studies and in combination with conventional

chemotherapy. One of these inhibitors, 17-allylaminio, 17-demethoxygeldanamycin (17-AAG, NSC 330507) has recently completed phase I testing. The agent was well tolerated at drug exposures that were shown to cause modulation of Hsp90 client protein levels. Given the redundancy and complexity of the molecular abnormalities present in most breast cancers, the ability of Hsp90 inhibitors to alter the activity of multiple oncogenic targets may prove of unique therapeutic benefit. *Anti-Cancer Drugs* 15:651–662 © 2004 Lippincott Williams & Wilkins.

Anti-Cancer Drugs 2004, 15:651–662

Keywords: geldanamycin, ansamycin, chaperone, heat shock protein

^aDepartment of Urology, Stanford University School of Medicine, Stanford, CA, USA and ^bSteele Memorial Children's Research Center and Arizona Cancer Center, Tucson, AZ, USA.

Sponsorship: Fellowship support provided to J. B. by the Tee Up for Tots Foundation

Correspondence to L. Whitesell, Department of Pediatrics, Hematology/Oncology, Room 5341, Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA.
Tel: +1 520 626-4851; fax: +1 520 626-6986;
e-mail: whitelj@peds.arizona.edu

Received 13 May 2004 Accepted 18 May 2004

Introduction

Breast cancer is the most frequently diagnosed non-skin cancer in American women. Mortality rates due to the disease are second only to lung cancer. In women aged 35–54, breast cancer is the leading cause of all deaths [1]. Over the last decade, improvements in early detection through mammographic screening have correlated with decreased breast cancer-associated mortality and increased detection of localized breast cancer (breast cancer *in situ*). Importantly, patients with breast cancer *in situ* have a 97% 5-year survival rate following treatment. Unfortunately, survival rates decrease rapidly for patients with more advanced disease. Despite the best currently available treatment, five-year survival rates for patients with regional disease and metastatic/disseminated breast cancer drop to 78 and 23%, respectively [2]. Clearly, more effective medical therapies are greatly needed.

Recent advances in understanding the molecular genetic pathology underlying the growth and metastasis of breast cancers have made possible the development of targeted

therapeutics that do not rely on the generalized disruption of DNA metabolism and cell division. Because of its well-recognized role in breast cancer biology, one of the first molecular targets identified for therapeutic intervention using non-cytotoxic drugs was the estrogen receptor (ER) [3]. Although most patients initially respond to ER-targeted therapy, the approach is severely limited by the development of acquired resistance [4]. Much of this resistance appears to be mediated by critical crosstalk between the estrogen receptor and other signaling pathways [5,6]. In particular, members of the erbB and Akt family of kinases have been shown to cooperate with the ER in mediating breast tumor cell proliferation/survival, and have been identified as potential therapeutic targets in their own right [7]. Unfortunately, genomic instability and the heterogeneity of molecular defects present in most breast cancers are likely to make emergence of resistance a problem for inhibitors of these pathways as well as for ER-targeted therapeutics. Indeed, clinical experience with imatinib mesylate, a potent and selective inhibitor of the fusion kinase Bcr–Abl in chronic myeloid leukemia suggests that

such resistance may prove a common limitation to molecularly targeted anticancer drugs in general [8–10].

An intriguing approach to addressing the problem of resistance to inhibitors of specific signal transducers could be provided by agents that disrupt heat shock protein 90 (Hsp90) function. This molecular chaperone associates with a distinct, but surprisingly diverse, set of proteins that are referred to as Hsp90 client proteins. Hsp90 binds to these clients, and plays a key role in regulating their stability and function [11]. Importantly, many of these Hsp90 client proteins are kinases and transcription factors involved in the malignant biology of breast cancers. In particular, the steroid hormone receptors (SHRs) are exquisitely sensitive to alterations in Hsp90 function [12], suggesting that inhibitors of this chaperone may prove quite useful in the management of hormonally regulated breast tumors. For the interested reader, detailed reviews are available addressing the molecular and cellular biology of heat shock proteins, in general [13–15], and Hsp90, in particular [16,17]. Recent phase I trials of 17-allylaminol, 17-demethoxygeldanamycin (17-AAG, NSC 330507), the first Hsp90 inhibitor to undergo clinical development, have demonstrated that Hsp90 function can be modulated pharmacologically without excessive toxicity in humans. A number of second-generation compounds are now in late preclinical development. Recent reviews are available that detail the rationale for targeting Hsp90 in cancer and summarize the clinical experience with 17-AAG to date [18–20]. In this paper, we will focus on the role of Hsp90 in regulating several of the key signaling proteins involved in breast cancer progression and discuss how Hsp90 inhibitors may provide a useful new approach for the treatment of this disease, either alone or in combination with other therapies.

Chaperone biology and Hsp90 function

The molecular chaperones are ubiquitous proteins that act to maintain proper protein folding within the cell. They are required for several critical cellular processes, including folding of nascent polypeptide chains, prevention of protein aggregation and protein transport across cell membranes [21]. They were first identified as proteins that were highly expressed under conditions of elevated temperature and were named 'heat shock proteins' (Hsps) [22]. Subsequently, it was appreciated that expression of these proteins was induced not just by heat, but by a variety of cellular stresses including exposure to heavy metals, oxidative stress and inflammation [15]. There are six major Hsp families, grouped according to their molecular size: Hsp100, Hsp90, Hsp70, Hsp60, Hsp40 and the small Hsps (20–25 kDa in size). Members of these Hsp families are localized to the cytosol, the endoplasmic reticulum and the mitochondria, where they carry out their functions. Although there is

significant overlap in function between members of the molecular chaperone superfamily, Hsp90 is unique in its ability to stabilize a number of signaling proteins involved in cancer progression. The functions of other Hsp family members are beyond the scope of this review and will only be discussed as they relate to Hsp90.

Hsp90 is one of the most abundant proteins in the unstressed cell, comprising about 1–2% of the total soluble cytosolic protein [23]. Hsp90 is highly conserved from bacteria to animals and knockout is lethal in all eukaryotic organisms, indicating that its function is important for vital cellular processes [15,24]. Unlike many other Hsp family members, which are involved in the general maintenance of protein folding, Hsp90 has a unique set of proteins with which it interacts. These substrate proteins have been termed Hsp90 'client proteins' and depend on Hsp90 interactions for their activity. Over 100 Hsp90 clients have been documented, many of which are involved in regulating growth and survival (see below). A frequently updated list is maintained by the lab of D. Picard and can be accessed at: www.picard.ch/DP/downloads/Hsp90interactors.pdf.

There are two isoforms of Hsp90 in humans: Hsp90 α and Hsp90 β . In most tissues, Hsp90 α levels are elevated under conditions of cellular stress and Hsp90 β is constitutively expressed [16]. The proteins are 76% identical and are the likely result of gene duplication 500 million years ago [25]. Hsp90 α has been mapped to chromosome 14 and the Hsp90 β gene is located on chromosome 6 [26–29]. It is unclear what functional differences exist between Hsp90 α and Hsp90 β , and in most cases the two isoforms are not distinguished from one another. However, the proteins are probably not entirely redundant, since a knockout mouse strain for Hsp90 β displays embryonic lethality [30]. The Hsp90 genes are regulated, at least in part, by a family of cell stress-inducible transcription factors called the heat shock factors (HSFs). Both Hsp90 genes contain heat shock-responsive elements (HSEs) in their promoters [31–33], which are bound by the HSFs to initiate transcription.

The Hsp90 protein contains three functional domains: an ~25-kDa N-terminal domain, a 'charged linker' domain and an ~55-kDa C-terminal domain [34]. The crystal structure of the N-terminal domain has been elucidated, and contains a unique ATP-binding pocket similar to that of DNA gyrase and the histidine kinase Mut L [35–37]. The N-terminal domain has weak ATPase activity, which is enhanced by binding of client proteins [38–40]. The highly charged linker region bridges the N- and C-termini. It is specific for eukaryotic Hsp90, and may facilitate binding to some client proteins through alternating lysine and glutamic acid residues (so-called

'KEKE motifs') [41]. However, this region is dispensable for most Hsp90 functions [42]. The C-terminal portion of Hsp90 contains an essential constitutive dimerization domain [43]. Recent studies with cisplatin and novobiocin have shown that these drugs can bind, albeit with very low affinity, within the C-terminus of Hsp90. The findings suggest that this region of the chaperone may harbor a second, cryptic ATP-binding domain that is revealed by nucleotide occupancy of its N-terminal site [44,45]. A better understanding of this site's role in regulating Hsp90 function and its potential as an anticancer drug target awaits the discovery of more potent, site-specific inhibitors than the compounds identified so far. The far end of the C-terminus contains the amino acid sequence MEEVD, which is the binding site for the tetratricopeptide repeat (TPR) region that is present on most Hsp90 co-chaperones [46]. Based on recent information about the structural domains of Hsp90, an overall model for Hsp90 chaperoning function has emerged. This model suggests that Hsp90 is constitutively dimerized at the C-terminus, with the ADP-bound N-terminal domains pointing in opposing directions. Upon ATP binding, the N-terminal regions transiently dimerize, forming a molecular clamp around the client protein [47,48]. Hsp90 co-chaperones appear to regulate this clamp by altering the ability of Hsp90 to bind/hydrolyze ATP [40,49,50].

In 1992, it was discovered that geldanamycin (GA) and other benzoquinone ansamycin antibiotics possessed potent antitumor activity that was unrelated to their proposed mechanism of action as inhibitors of the tyrosine kinase Src [51]. Two years later, the target for these agents was demonstrated to be Hsp90 [52]. Subsequently, the GA binding site on Hsp90 was identified as an ATP-binding pocket in the N-terminus of the chaperone [35,53,54]. This pocket is also the binding site of the structurally unrelated natural product radicicol. These drugs act as ADP mimetics, but bind to Hsp90 with higher affinity than the natural nucleotides [55]. Drug binding locks Hsp90 in its ADP-bound conformation and prevents formation of mature Hsp90-containing multi-chaperone complexes with subsequent effects on client protein stability and function in biochemical and cell culture systems. Due to extensive hepatic metabolism, however, neither GA nor radicicol retain activity in whole animals. *In vivo* activity has been demonstrated for the GA derivative 17-AAG which is now undergoing clinical testing, but it too suffers from significant problems due to metabolism and poor solubility. As a result, considerable effort is being directed at developing new inhibitors with better pharmacological and toxicity profiles (Table 1). A variety of approaches are being pursued by academic labs as well as the pharmaceutical industry. These include structure-based screens targeting the Hsp90 nucleotide-binding pocket [56], a colorimetric screen for inhibitors of Hsp90 ATPase

Table 1 Inhibitors of Hsp90's N-terminal ATPase activity

Class	Members	Clinical status
Ansamycin	geldanamycin	NA
	herbimycin A	NA
	macbecins I and II	NA
	17-allylamino, 17-demethoxygeldanamycin (17-AAG)	phase II [156]
Macrolide	17-dimethylaminoethylamino, 17-demethoxygeldanamycin (17-DMAG)	phase I [157]
	radicicol	NA
Macrolide	monocilicin I	NA
	KF58333 (radicicol oxime derivative)	preclinical [117]
Purine scaffold	PU3	NA
	PU24FC1	preclinical [158]
Pyrazole	CCT018159	preclinical [159]

NA: not applicable, compound suitable for laboratory use only.

activity [57], a stress response-guided natural product screen (L. Whitesell, unpublished), a forward chemical genetic approach [58], directed synthesis of radicicol oxime derivatives [59] and the synthesis of modified purine scaffolds [60]. In attempts to achieve more specific targeting of GA to individual client proteins relevant to breast cancer, conjugation of the drug to estradiol [61], the phosphatidyl inositol-3 kinase (PI3K) inhibitor LY294002 [62] and the anti-erbB2 monoclonal antibody Herceptin [63] has also been reported. Most of this new agent development work is at the stages of lead optimization and preclinical validation, but next generation compounds are expected to become available for clinical trial shortly. For example, a water-soluble, orally bioavailable GA derivative, 17-dimethylaminoethylamino, 17-demethoxygeldanamycin (17-DMAG; NSC 707545) is now available to begin NCI-sponsored phase I testing.

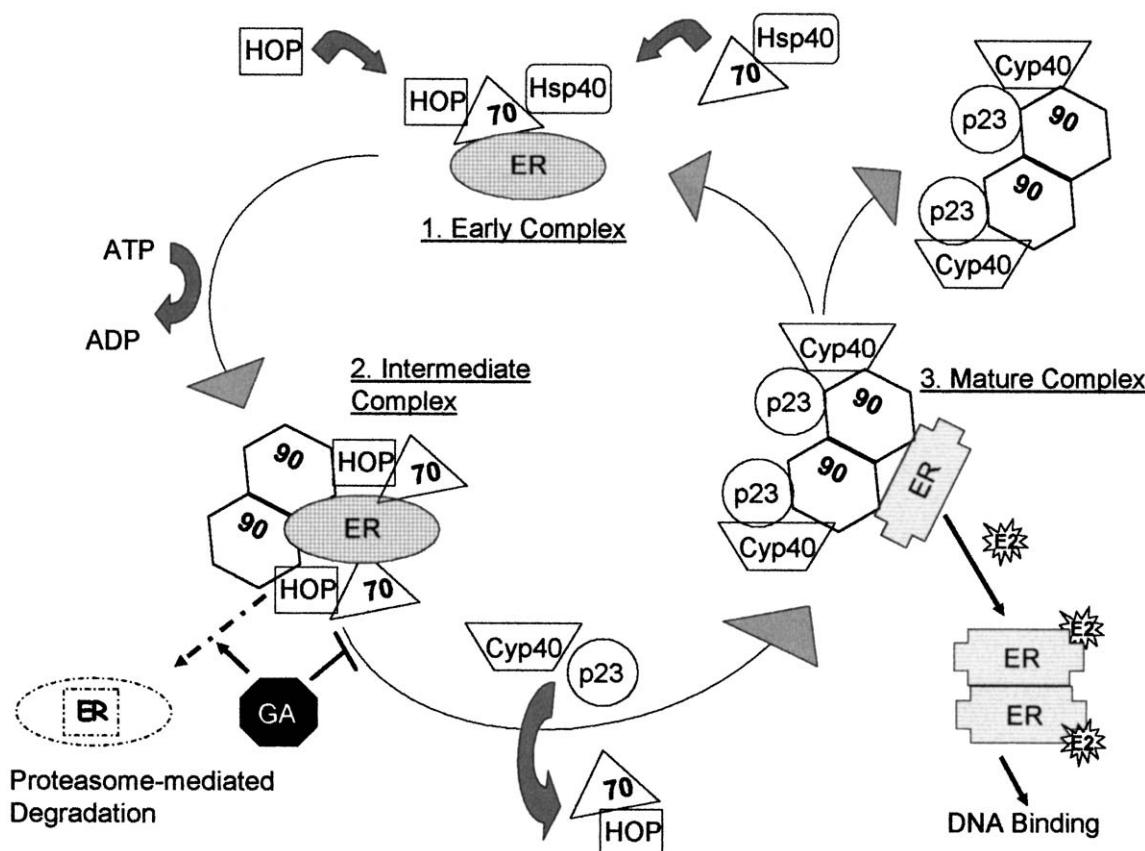
Hsp90 clients with particular relevance to breast cancer

SHRs

The ER is a member of the SHR superfamily of nuclear receptors, which includes receptors for androgens, glucocorticoids, progestins, thyroid hormone and retinoids. A shared characteristic between all members of the family is the ability to directly activate gene transcription upon ligand binding. The ER is a particularly attractive target for the treatment of breast cancer because protein levels are elevated in many premalignant and malignant lesions, and constitutive ER transcriptional activation is seen in over 50% of diagnosed breast cancers [64,65]. The mechanism for increased ER protein and transcriptional activity is not due to mutations, since alterations in the ER gene are rarely observed in breast carcinomas [65,66]. Indeed, most hormone-refractory tumors retain a functional ER and many are responsive to second-line hormonal therapy [67]. Therefore, it appears that the ER remains a relevant target for the treatment of hormone-insensitive tumors.

Early studies with SHRs utilized a cell-free rabbit reticulocyte lysate system to demonstrate that chaperone proteins are required for assembly of mature receptor complexes that are capable of binding hormone with high affinity. It was initially shown that the *in vitro* glucocorticoid receptor (GR) translation product from reticulocyte lysate was indistinguishable from the native receptor in terms of steroid binding and association with DNA [68]. It was subsequently shown that salt-stripped progesterone receptor (PR) could assemble into a functional complex when added to reticulocyte lysate, indicating that protein translation was not a requirement for receptor maturation [69]. Further studies identified Hsp70, p60/Hop, p23 and the large immunophilins (such as cyclophilin 40 in the case of the ER) as additional components that bind to SHRs [12]. The immunophilins clearly participate in mature Hsp90–co-chaperone–client protein complexes, but their function is not yet well understood. They are not absolutely required for the formation of functional SHR complexes [70,71]. Instead, they appear to modulate the affinity of such complexes for ligand [72,73]. There is also some evidence to suggest that they may link Hsp90 to a dyenin motor protein to facilitate glucocorticoid receptor translocation to the nucleus [17]. Based on findings in reticulocyte lysate and purified protein reconstitution systems, the minimal requirements for mature complex assembly have now been identified as: Hsp90, Hsp70, p60/Hop, Hsp40 and p23 [70,71].

Hsp90 interacts with the ligand-binding domain (LBD) of SHRs. The relative affinity of this association is not uniform across the SHRs, as the interaction between Hsp90 and the ER LBD is much less stable than that of the GR or PR [74]. It has recently been shown that the Hsp90 N-terminal ATP-binding domain (amino acids 1–224) is required for its interaction with the ER [75]. Hsp90 is critical for maintaining the LBD of SHRs in a conformation that is capable of high-affinity ligand binding [76] and SHRs cannot be activated by ligand in the absence of Hsp90 [77]. Hsp70 also binds the LBD of SHRs and deletion of the LBD abrogates the Hsp70 interaction [74,78]. Recent studies have also shown that Hsp70 binds directly to Hsp90 and that these two chaperones cooperate to maintain the LBD in a state capable of activation [79,80]. Another mechanism for Hsp90–Hsp70 association during SHR maturation is through interactions with the co-chaperone p60/Hop. p60/Hop acts as a physical linker by binding to Hsp70 via a TPR domain at the N-terminus and to Hsp90 through a separate TPR domain at the center of the protein [81,82]. Further, the binding of p60/Hop to Hsp90 inhibits ATP binding and its ATPase activity [40,49]. This suggests that p60/Hop influences Hsp90's function as well as its association with Hsp70. p23 associates only with the ATP-bound form of Hsp90 [83] and appears to


stabilize mature Hsp90–SHR complexes [84]. The Hsp90 binding site for p23 is localized to the N-terminus, and requires an Hsp90 dimer for association [85]. Hsp40 is not essential for the formation of a ligand binding-competent SHR, although it greatly enhances ligand binding activity [70,71,86]. This is likely due to the ability of Hsp40 to bind to Hsp70 and increase its ATPase activity. Although chaperone involvement has been studied most extensively in the case of SHR maturation and function, similar mechanisms appear to exist for many other Hsp90 clients [87]. While the core machinery remains constant, however, the restricted recruitment of specific co-chaperones to certain classes of client has been demonstrated, most notably p50/cdc37 in the case of kinases [88].

Chaperone interactions with their clients are not static. In the case of SHRs, they appear to occur in a dynamic, iterative fashion to stabilize the receptors in a conformation capable of binding hormone with high affinity. A cartoon summarizing the key chaperone interactions thought to be important in functional maturation of the ER is provided in Figure 1. As described above and depicted in Fig. 1, Hsp90 inhibitors such as GA act as nucleotide mimetics that lock Hsp90 in an ADP-bound conformation. A major consequence of this interaction is inhibition of p23–Hsp90 association, effectively blocking formation of the mature ER–multi-chaperone complex. Instead, the ER accumulates in an intermediate complex that is directed toward the ubiquitin–proteasome pathway by E3 ligases such as CHIP. This results in marked depletion of ER levels and loss of ER function [89,90]. Similar effects have been observed for the androgen receptor (AR) [91,92], PR [93] and GR [94,95], indicating that Hsp90 binding agents may also be useful in the treatment of other hormone-associated malignancies.

Tumor suppressor p53

Mutation of the p53 gene is among the most commonly detected genetic alterations in cancer [96,97] and occurs in approximately 30% of breast tumors [65]. Furthermore, several studies have correlated p53 mutation with poor prognosis and decreased survival [98–100]. The p53 protein regulates an array of important cellular functions, including regulation of the cell cycle and apoptosis and DNA repair. p53 levels are tightly regulated at the post-translational level by the ubiquitin–proteasome pathway, mainly by the MDM2 E3 ubiquitin ligase [101,102]. Wild-type p53 has been shown to interact with Hsp90 and other components of the chaperone machinery [103,104]. However, more stable association is observed with many p53 mutants as a result of their misfolded conformations [13,105,106]. The extended interaction of p53 with the chaperone machinery appears to protect the protein from normal proteolytic turnover, leading to the

Fig. 1

The role of molecular chaperones in ER function. Schematic representation of the steps involved in the chaperone-mediated maturation of the ER. The newly synthesized ER associates with Hsp70, Hsp40 and the co-chaperone p60/Hop to form an early complex (1). The hydrophobic hormone-binding domain is partially exposed in this complex and Hsp90 binds to this region and displaces Hsp40 to form an intermediate complex (2). In an ATP-dependent step, the ATP-bound form of Hsp90 fully exposes the hormone-binding domain and the co-chaperone p23 stabilizes the ATP-bound Hsp90. Cyclophilin 40 (Cyp40) fills the open TPR acceptor site on Hsp90 to complete a mature complex (3). In the absence of ligand, the ER is eventually released from the mature complex to undergo another cycle of ATP-dependent chaperone interactions. Estrogen binding, however, results in a conformational change in the ER, which leads to release of chaperone components, tight binding of the receptor protein to ER response elements and recruitment of the co-activators needed to drive transcription. GA binding to Hsp90 locks the chaperone in an ADP-bound conformation that prevents formation of mature complexes. As a result, the ER accumulates in an intermediate chaperone complex that targets it for ubiquitination and proteasome-mediated degradation.

prolonged half-life and increased cellular levels observed for many mutant p53 proteins [107]. Treatment of cells with GA restores the proteasome-mediated degradation of mutant p53 proteins and decreases their cellular levels [108]. This may diminish the dominant negative effect mutant p53 exerts on the function of wild-type p53 in heterozygous cells, but it does not restore wild-type function to the mutant protein [106].

Angiogenesis transcription factor Hif-1 α

Hif-1 α is a member of the hypoxia-inducible family of transcription factors, which are upregulated under low oxygen conditions [109]. As with p53, the cellular levels of Hif-1 α protein appear to be primarily regulated at the posttranslational level. In the presence of oxygen, Hif-1 α associates with the Von Hippel-Lindau (VHL) tumor

suppressor protein, an E3 ubiquitin ligase, and is degraded through the ubiquitin-proteasome pathway [110]. Hypoxia inhibits the Hif-1 α -VHL interaction, allowing Hif-1 α to accumulate and translocate to the nucleus. Hif-1 α then dimerizes with Hif-1 β , forming an active transcriptional complex. The Hif-1 α /Hif-1 β heterodimer associates with hypoxia-response elements (HREs) to activate the transcription of Hif-1 target genes, such as vascular endothelial growth factor (VEGF). Importantly, increased Hif-1 α levels are associated with poor prognosis and increased metastatic disease in breast cancer patients [111,112], and decreased responsiveness to hormonal therapy [113]. Recent evidence has shown that Hif-1 α cellular levels are depleted in several different cancer cell types following exposure to GA, implicating Hsp90 in the regulation of Hif-1 α stability.

[114]. This effect was observed under both normoxic and hypoxic conditions, and resulted in inhibition of Hif-1 α transcriptional activity. Furthermore, co-immunoprecipitation studies have determined that Hsp90 physically interacts with Hif-1 α [115]. Interestingly, the degradative effects of GA on Hif-1 α appear to be through a VHL-independent mechanism, indicating that a novel Hif-1 α degradation pathway exists [116]. Taken together, these data suggest a potential application for Hsp90 binding agents in the clinic as inhibitors of tumor angiogenesis [117].

Antia apoptotic kinase Akt

The Akt serine/threonine kinase is a downstream effector of the PI3K pathway and plays a key role in propagating pro-survival signals within the cell [118]. Co-immunoprecipitation experiments have determined that Akt forms a complex with Hsp90 and the co-chaperone Cdc37. Exposure to Hsp90 inhibitors reduces Akt half-life, resulting in an 80% decrease in cellular Akt levels [119]. Depletion of Akt protein following exposure to Hsp90 inhibitors is also observed in breast and prostate tumor xenografts, and correlates with decreased tumor growth [89,92]. Furthermore, depletion of Akt by 17-AAG also appears to provide enhanced tumor sensitivity to taxol administration [120], providing a rationale for the use of Hsp90 inhibitors in combination with conventional chemotherapy drugs. Interestingly, treatment with Hsp90 binding agents results in rapid loss of Akt phosphorylation (and Akt activity) well before depletion of protein levels are observed [121]. This is likely due to depletion of other Hsp90 clients that regulate Akt phosphorylation, such as the erbB2 receptor tyrosine kinase.

Raf-1 kinase

The serine/threonine kinase Raf-1 is a member of the highly conserved mitogen-activated protein (MAP) kinase signaling pathway, which plays key roles in cell differentiation, proliferation, and survival. The GTP-binding protein Ras regulates Raf-1 activity and is mutated in as many as 30% of human cancers [122]. Upon growth factor stimulation, GTP-bound Ras recruits Raf-1 to the plasma membrane where it is phosphorylated on serine and threonine residues. Raf-1 then phosphorylates MEK, which leads to activation of the extracellular-regulated kinases (ERKs) 1 and 2. The ERKs in turn activate a number of transcription factors, including *c-myc*, Elk-1 and Jun [123]. Raf-1 is known to form a complex with Hsp90 and the p50 chaperone. Studies have shown that Raf-1 levels are depleted in cells exposed to GA, while other members of the MAP kinase cascade are unaffected. However, this reduction is sufficient for decreased MEK phosphorylation, as well as reduced Raf-1-stimulated cell proliferation and transcriptional activity [124]. Importantly, the depletion of Raf-1 by Hsp90 inhibitors is also observed *in vivo*. Treatment with 17-AAG has been shown to cause

reproducible depletion of Raf-1 levels in mouse tumor xenograft models of breast cancer [89] and in patients treated on phase 1 clinical trials [19].

Receptor tyrosine kinases

erbB2 and EGFR are members of the erbB family of transmembrane receptor tyrosine kinases. Activation of these family members leads to downstream signaling through the PI3K/Akt and MAP kinase pathways, resulting in enhanced cell proliferation and survival [125]. Increased erbB2 levels are one of the most common alterations in breast cancer, occurring in about 30% of cases. Importantly, erbB2 overexpression is associated with poor prognosis and resistance to therapy [125,126]. Given its important role in breast cancer progression, erbB2 has become a major target for therapeutic intervention. Several EGFR/erbB2 inhibitors are in various stages of clinical development, and have displayed antiproliferative activity in erbB2 overexpressing cells, as well as enhanced sensitization to radiation therapy [7,127]. Studies have shown that both EGFR and erbB2 physically interact with Hsp90 in whole cells, and that exposure to GA results in rapid depletion of these proteins [128,129]. The intracellular kinase domain of erbB2 appears to be the Hsp90-interaction site, as deletion of this region renders the receptor insensitive to GA-induced degradation. Interestingly, recent evidence implicates the ubiquitin ligase CHIP in GA-induced degradation of the erbB2 protein, indicating that the mechanism of erbB2 depletion may be similar to that of other Hsp90 client proteins [130]. The type 1 insulin-like growth factor receptor (IGF-1R) is another receptor tyrosine kinase that is sensitive to the degradative effects of GA (L. Whitesell, unpublished observations). Importantly, the IGF-1R pathway provides potent mitogenic and survival signals in breast cells that can promote oncogenesis, and inhibition of this pathway sensitizes breast cancer cells to radiation therapy [131,132]. Although the contribution of GA-mediated IGF-1R depletion to the anti-breast cancer activity of the compound is unclear at present, it is tempting to speculate that disruption of IGF-1R signaling could play an important role in the antitumor effects of Hsp90 inhibitors.

Hsp90 inhibitors in breast cancer treatment

Conceptually, Hsp90 function provides an attractive therapeutic target, but the efficacy of this approach has yet to be demonstrated in breast cancer patients. Both cytotoxic and cytostatic anticancer activities have been reported for Hsp90 inhibitors in cell culture and animal tumor models. Information regarding clinical responses in patients with cancer, however, is limited because the first in class Hsp90 inhibitor, 17-AAG, has only been studied in the phase I setting so far. To date, the only responses observed have been disease stabilization consistent with a

cytostatic effect [20]. Given what is known regarding Hsp90's role in malignant transformation, however, this is not terribly surprising. The ability of Hsp90 inhibitors to disrupt multiple oncogenic clients simultaneously is an attractive feature therapeutically, but the pleiotropic effects of targeting Hsp90 make it very difficult to identify predictive indicators of activity and which patients are likely to benefit most from the drug. Despite this basic problem, some molecular genetic and pharmacological determinants of drug sensitivity with relevance to the clinical setting are beginning to emerge and are summarized in [133]. Additional insights are likely to be gained through upcoming NCI-sponsored phase II trials of 17-AAG that will focus on specific malignancies, including breast cancer, in which Hsp90 clients are known to play an important role.

An obvious concern regarding the use of agents that target an essential and ubiquitously expressed protein like Hsp90 is that disruption of the function of the target might be expected to have prohibitive side-effects in normal tissues. Based on phase I studies of the Hsp90 inhibitor 17-AAG, however, this does not appear to be the case. Potential explanations for the minimal toxicity observed in patients treated with the first in class of the Hsp90 inhibitors have recently emerged. It appears likely that tumor cells have a higher requirement for Hsp90 function than normal cells, perhaps due to their markedly increased load of mutated, misfolded proteins [134]. Since it has not been feasible to measure directly the extent of Hsp90 inhibition achieved in whole cells, it is possible that the level of drug-mediated inhibition achieved *in vivo* is sufficient to deplete mutant client protein levels in tumor cells, but is not sufficient to lethally compromise normal cells. Such appears to be the case with inhibitors of the proteasome, another essential multi-protein complex that has been successfully targeted for cancer therapy [135]. Very recently, another potential mechanism for the antitumor selectivity of 17-AAG was reported by Kamal *et al.* This group found that most of the Hsp90 in tumor cells is engaged in multi-chaperone complexes, while the Hsp90 in normal cells is not. The extensively complexed Hsp90 in tumors demonstrated a 100-fold greater affinity for 17-AAG in competitive binding assays than the mostly non-complexed Hsp90 isolated from non-malignant cells [136]. Additional studies designed to shed further light on the differential sensitivity of normal cells and tumor cells to Hsp90 inhibitors are ongoing.

Because 17-AAG has been well tolerated in phase I trials, studies of its use in combination with other therapies are also proceeding. The ability to disrupt signaling pathways that promote tumor cell survival suggests that Hsp90 inhibitors may well prove most effective in the clinic as sensitizers to existing therapeutic regimens. Preclinical

data generated *in vitro* and *in vivo* indicate that 17-AAG does indeed enhance the induction of tumor cell death by radiation [137,138]. Studies have also appeared demonstrating supra-additive cell killing by the combination of 17-AAG with cytotoxic agents in breast cancer [140,141], chronic myeloid leukemia [139] and non-small cell lung cancer [142,143]. Of note, significant schedule dependence was observed in some breast cancer cell lines when the Hsp90 inhibitor was combined with taxol [140]. Such dependence is probably related to the profound cell cycle arrest induced by Hsp90 inhibitors. The exact mechanism responsible for this arrest is not clear. It appears to be p53-independent [144], but may involve the tumor suppressor Rb [145] and/or the critical cell cycle protein Chk1 [146]. Conflicting findings regarding synergy versus antagonism have been reported for the combination of 17-AAG with the cell cycle non-specific agent cisplatin [147,148]. This may be due to differences in the cell lines and techniques used to perform the studies. Nevertheless, the combination of these two drugs remains quite intriguing in light of the evidence that cisplatin itself is an Hsp90-binding drug (see above). Occupancy of Hsp90's N-terminal ATP-binding site by GA clearly enhances the ability of cisplatin to bind the chaperone [45], but the extent to which this contributes to its anticancer activity is not known.

While the use of Hsp90 inhibitors in combination with conventional cytotoxic agents may be clinically beneficial with several specific agents, recent work in our laboratory suggests that agents to be used in combination with Hsp90 inhibitors must be selected carefully. We chose to evaluate the effects of Hsp90 inhibitors, which modulate ER function in a non-ligand dependent manner, in combination with the ER antagonist tamoxifen. The ER is a very well validated molecular target for breast cancer therapy, and drugs such as tamoxifen that antagonize ER function are in widespread clinical use. Unfortunately, the frequent emergence of resistance severely limits their ability to cure patients. Several mechanisms for tamoxifen resistance have been proposed, including increased ligand-independent ER activation and alterations in ER cofactor availability [149,150]. Regardless of the mechanism, however, it appears that the ER protein itself is still required for the progression of tamoxifen-resistant tumors [151]. Therefore, the ER remains an important target for the treatment of hormone refractory disease. Because the mechanism of Hsp90 inhibitors involves degradation of client proteins, they present an intriguing alternative for the inhibition of molecular targets that have become resistant to small molecule antagonists. Indeed, we have observed that ER levels are depleted comparably in both tamoxifen-sensitive and tamoxifen-resistant breast cancer cell lines, and that tamoxifen-resistant tumors remain sensitive to 17-AAG [89]. Interestingly, tamoxifen inhibits the degradative effects

of GA and 17-AAG on the ER *in vitro* and *in vivo*. This effect appears to be ER-specific, as the expected depletion of other Hsp90 clients was still observed. The mechanisms responsible for tamoxifen-mediated inhibition of ER degradation are not completely defined, but we have found in MCF-7 cells that tamoxifen disrupts normal and GA-enhanced proteolytic processing of the ER by prolonging its association with DNA at estrogen response elements (Beliakoff and Whitesell, unpublished observations). The clinical significance of this finding is not yet clear, but caution appears appropriate as use of Hsp90 inhibitors in combination with tamoxifen is considered.

Additive antiproliferative activity against MCF-7 breast cancer cells has been reported for the combination of GA with proteasome inhibitors such as Bortezomib (PS-341). At a molecular level, this effect may result from increased protein misfolding induced by GA coupled to impaired clearance of proteins by the ubiquitin proteasome pathway [152,153]. Lastly, synergistic anticancer activity has also been reported for Hsp90 inhibitors combined with histone deacetylase (HDAC) inhibitors [154]. The precise mechanisms underlying this effect are still not clear, but it is intriguing that increased acetylation of Hsp90 has been demonstrated following exposure of cells to HDAC inhibitors, and hyper-acetylation of the protein appears to inhibit its ATP binding and chaperone activities. Some of the cellular effects of HDAC inhibitor exposure, including client protein depletion, are reminiscent of the effects of classical Hsp90 inhibitors such as 17-AAG [155]. The extent to which the effects of HDAC inhibitors on Hsp90 contribute to their anticancer activity or their ability to alter chromatin structure are just beginning to be explored.

Summary and conclusions

It is an exciting time in the development of Hsp90 inhibitors as novel agents for cancer chemotherapy. These drugs appear to provide an alternative strategy to treat breast cancer that has become resistant to currently available therapies, but their efficacy remains to be demonstrated in the clinic. Much of the enthusiasm for their development is derived from their ability to simultaneously deplete cellular levels of proteins such as erbB2, Akt, Raf-1 and mutant p53 that have been associated with resistance to hormonal therapies, conventional chemotherapeutics and radiation.

Studies in cell culture and animal breast cancer models have shown that Hsp90 inhibitors possess antitumor activity as single agents or as sensitizers to conventional treatments. 17-AAG, the first Hsp90-binding agent to enter the clinic, has completed phase I trials and is well tolerated. Importantly, modulation of Hsp90 client proteins has been demonstrated in post-therapy breast

tumor tissue at doses below the maximum tolerated dose and additional studies of molecular target modulation in patients treated on subsequent trials will be performed in the near future. Next generation compounds are currently under development that will hopefully provide a better therapeutic index and greater ease in formulation than 17-AAG. The best ways to use Hsp90 inhibitors in patients remain to be defined, but they clearly represent an emerging class of anticancer drug with a unique mechanism of action. As such they appear to hold considerable promise for the treatment of refractory breast cancer, either alone or in combination with other agents.

Acknowledgments

We thank R. Bagatell for critical review and helpful suggestions.

References

- 1 Osuch JR. Breast health and disease over a lifetime. *Clin Obstet Gynecol* 2002; **45**:1140-1161.
- 2 American Cancer Society. *Cancer Facts and Figures 2003*. Atlanta, GA: ACS, 2003.
- 3 Osborne CK, Zhao H, Fuqua SA. Selective estrogen receptor modulators: structure, function, and clinical use. *J Clin Oncol* 2000; **18**:3172-3186.
- 4 Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, Zhu Y, et al. Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. *Oncogene* 2003; **22**:7316-7339.
- 5 Schiff R, Massarweh SA, Shou J, Bharwani L, Mohsin SK, Osborne CK. Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. *Clin Cancer Res* 2004; **10**:331S-336S.
- 6 Schiff R, Massarweh S, Shou J, Osborne CK. Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. *Clin Cancer Res* 2003; **9**:447S-454S.
- 7 Zhou H, Kim YS, Peletier A, McCall W, Earp HS, Sartor CI. Effects of the EGFR/HER2 kinase inhibitor GW572016 on EGFR- and HER2-overexpressing breast cancer cell line proliferation, radiosensitization, and resistance. *Int J Radiat Oncol Biol Phys* 2004; **58**:344-352.
- 8 Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. *Science* 2001; **293**:876-880.
- 9 Tauchi T, Ohyashiki K. Molecular mechanisms of resistance of leukemia to imatinib mesylate. *Leuk Res* 2004; **28**(suppl 1):39-45.
- 10 Scappini B, Gatto S, Onida F, Ricci C, Divoky V, Wierda WG, et al. Changes associated with the development of resistance to imatinib (ST1571) in two leukemia cell lines expressing p210 Bcr/Abl protein. *Cancer* 2004; **100**:1459-1471.
- 11 Pratt WB. The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. *Proc Soc Exp Biol Med* 1998; **217**:420-434.
- 12 Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones. *Endocr Rev* 1997; **18**:306-360.
- 13 Smith DF, Whitesell L, Katsanis E. Molecular chaperones: biology and prospects for pharmacological intervention. *Pharm Rev* 1998; **50**:493-513.
- 14 Buchner J. Hsp90 & Co.—a holding for folding. *Trends Biochem Sci* 1999; **24**:136-141.
- 15 Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death [Comment]. *J Natl Cancer Inst* 2000; **92**:1564-1572.
- 16 Csermely P, Schnaider T, Soti C, Prohászka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. *Pharmacol Ther* 1998; **79**:129-168.
- 17 Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. *Exp Biol Med* 2003; **228**:111-133.
- 18 Bagatell R, Whitesell L. Altered Hsp90 function in cancer: a unique therapeutic opportunity. *Mol Cancer Ther* 2004; in press.

19 Banerji U, Judson I, Workman P. The clinical applications of heat shock protein inhibitors in cancer—present and future. *Curr Cancer Drug Targets* 2003; **3**:385–390.

20 Neckers L, Ivy SP. Heat shock protein 90. *Curr Opin Oncol* 2003; **15**: 419–424.

21 Hartl FU. Molecular chaperones in cellular protein folding. *Nature* 1996; **381**:571–579.

22 Lindquist S, Craig EA. The heat-shock proteins. *Annu Rev Genet* 1988; **22**:631–677.

23 Lai BT, Chin NW, Stanek AE, Keh W, Lanks KW. Quantitation and intracellular localization of the 85K heat shock protein by using monoclonal and polyclonal antibodies. *Mol Cell Biol* 1984; **4**:2802–2810.

24 Borkovich KA, Farrelly FW, Finkelstein DB, Taulien J, Lindquist S. Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. *Mol Cell Biol* 1989; **9**:3919–3930.

25 Moore SK, Kozak C, Robinson EA, Ulrich SJ, Appella E. Murine 86- and 84-kDa heat shock proteins, cDNA sequences, chromosome assignments, and evolutionary origins. *J Biol Chem* 1989; **264**:5343–5351.

26 Ozawa K, Murakami Y, Eki T, Soeda E, Yokoyama K. Mapping of the gene family for human heat-shock protein 90 alpha to chromosomes 1, 4, 11, and 14. *Genomics* 1992; **12**:214–220.

27 Vamvakopoulos NC, Griffin CA, Hawkins AL, Lee C, Chrousos GP, Jabs EW. Mapping the intron-containing human hsp90 alpha (HSPCAL4) gene to chromosome band 14q32. *Cytogenet Cell Genet* 1993; **64**:224–226.

28 Durkin AS, Maglott DR, Vamvakopoulos NC, Zoghbi HY, Nierman WC. Assignment of an intron-containing human heat-shock protein gene (hsp90 beta, HSPCB) to chromosome 6 near TCTE1 (6p21) and two intronless pseudogenes to chromosomes 4 and 15 by polymerase chain reaction amplification from a panel of hybrid cell lines. *Genomics* 1993; **18**: 452–454.

29 Takahashi I, Tanuma R, Hirata M, Hashimoto K. A cosmid clone at the D6S182 locus on human chromosome 6p12 contains the 90-kDa heat shock protein beta gene (HSP90 beta). *Mamm Genome* 1994; **5**: 121–122.

30 Voss AK, Thomas T, Gruss P. Mice lacking HSP90beta fail to develop a placental labyrinth. *Development* 2000; **127**:1–11.

31 Erkine AM, Adams CC, Diken T, Gross DS. Heat shock factor gains access to the yeast HSC82 promoter independently of other sequence-specific factors and antagonizes nucleosomal repression of basal and induced transcription. *Mol Cell Biol* 1996; **16**:7004–7017.

32 Erkine AM, Adams CC, Gao M, Gross DS. Multiple protein–DNA interactions over the yeast HSC82 heat shock gene promoter. *Nucleic Acids Res* 1995; **23**:1822–1829.

33 Liu J, Wu N, Shen Y. Studies on the transcription regulation by upstream sequence of human heat shock protein 90 beta gene. *Chung-Kuo i Hsueh Ko Hsueh Yuan Hsueh Pao Acta Academiae Medicinae Sinicae* 1995; **17**:241–247.

34 Pearl LH, Prodromou C. Structure and *in vivo* function of Hsp90. *Curr Opin Struct Biol* 2000; **10**:46–51.

35 Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. *Cell* 1997; **90**:65–75.

36 Ban C, Yang W. Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. *Cell* 1998; **95**:541–552.

37 Ban C, Junop M, Yang W. Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. *Cell* 1999; **97**:85–97.

38 Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU. *In vivo* function of Hsp90 is dependent on ATP binding and ATP hydrolysis. *J Cell Biol* 1998; **143**:901–910.

39 Weikl T, Muschler P, Richter K, Veit T, Reinstein J, Buchner J. C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle. *J Mol Biol* 2000; **303**:583–592.

40 McLaughlin SH, Smith HW, Jackson SE. Stimulation of the weak ATPase activity of human hsp90 by a client protein. *J Mol Biol* 2002; **315**: 787–798.

41 Realini C, Rogers SW, Rechsteiner M. KEKE motifs. Proposed roles in protein–protein association and presentation of peptides by MHC class I receptors. *FEBS Lett* 1994; **348**:109–113.

42 Louvion JF, Warth R, Picard D. Two eukaryote-specific regions of Hsp82 are dispensable for its viability and signal transduction functions in yeast. *Proc Natl Acad Sci USA* 1996; **93**:13937–13942.

43 Minami Y, Kimura Y, Kawasaki H, Suzuki K, Yahara I. The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function *in vivo*. *Mol Cell Biol* 1994; **14**:1459–1464.

44 Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. *J Biol Chem* 2000; **275**:37181–37186.

45 Soti C, Racz A, Csermely P. A nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. *J Biol Chem* 2002; **277**:7066–7075.

46 Russell LC, Whitt SR, Chen MS, Chinkers M. Identification of conserved residues required for the binding of a tetratricopeptide repeat domain to heat shock protein 90. *J Biol Chem* 1999; **274**:20060–20063.

47 Prodromou C, Roe SM, Piper PW, Pearl LH. A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone [Comment]. *Nat Struct Biol* 1997; **4**:477–482.

48 Prodromou C, Panaretou B, Chohan S, Siligardi G, O'Brien R, Ladbury JE, et al. The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. *EMBO J* 2000; **19**:4383–4392.

49 Prodromou C, Siligardi G, O'Brien R, Woolfson DN, Regan L, Panaretou B, et al. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. *EMBO J* 1999; **18**:754–762.

50 Panaretou B, Siligardi G, Meyer P, Maloney A, Sullivan JK, Singh S, et al. Activation of the ATPase activity of hsp90 by the stress-regulated co-chaperone Aha1 [Comment]. *Mol Cell* 2002; **10**:1307–1318.

51 Whitesell L, Shifrin SD, Schwab G, Neckers LM. Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition. *Cancer Res* 1992; **52**:1721–1728.

52 Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. Inhibition of heat shock protein HSP90-pp60 σ -src heteroprotein complex formation by benzoquinonoid ansamycins: essential role for stress proteins in oncogenic transformation. *Proc Natl Acad Sci USA* 1994; **91**:8324–8328.

53 Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E, et al. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. *J Biol Chem* 1997; **272**:23843–23850.

54 Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP. Crystal structure of an Hsp90–geldanamycin complex: targeting of a protein chaperone by an antitumor agent. *Cell* 1997; **89**:239–250.

55 Schneider C, Sepp-Lorenzino L, Nimmessern E, Ouerfelli O, Danishefsky S, Rosen N, et al. Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. *Proc Natl Acad Sci USA* 1996; **93**:14536–14541.

56 Dymock B, Barril X, Beswick M, Collier A, Davies N, Drysdale M, et al. Adenine derived inhibitors of the molecular chaperone HSP90–SAR explained through multiple X-ray structures. *Bioorg Med Chem Lett* 2004; **14**:325–328.

57 Rowlands MG, Newbatt YM, Prodromou C, Pearl LH, Workman P, Aherne W. High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. *Anal Biochem* 2004; **327**:176–183.

58 Barbosa JA, Elkin L, Darrow J, Dipaolo J, Mitchel S, Currie KS, et al. Discovery of novel small molecule Hsp90 complex inhibitors using a forward chemical genetics approach. *Clin Cancer Res* 2003; **9(suppl)**:6176s.

59 Soga S, Neckers LM, Schulte TW, Shiootsu Y, Akasaka K, Narumi H, et al. KF25706, a novel oxime derivative of radicicol, exhibits *in vivo* antitumor activity via selective depletion of Hsp90 binding signaling molecules. *Cancer Res* 1999; **59**:2931–2938.

60 Chiosis G, Lucas B, Huezo H, Solit D, Basso A, Rosen N. Development of purine-scaffold small molecule inhibitors of Hsp90. *Curr Cancer Drug Targets* 2003; **3**:371–376.

61 Kuduk SD, Zheng FF, Sepp-Lorenzino L, Rosen N, Danishefsky SJ. Synthesis and evaluation of geldanamycin–estradiol hybrids. *Bioorg Med Chem Lett* 1999; **9**:1233–1238.

62 Chiosis G, Rosen N, Sepp-Lorenzino L. LY294002–geldanamycin heterodimers as selective inhibitors of the PI3K and PI3K-related family. *Bioorg Med Chem Lett* 2001; **11**:909–913.

63 Mandler R, Kobayashi H, Hinson ER, Brechbiel MW, Waldmann TA. Herceptin–geldanamycin immunoconjugates: pharmacokinetics, biodistribution, and enhanced antitumor activity. *Cancer Res* 2004; **64**:1460–1467.

64 Allred DC, Mohsin SK. Biological features of human premalignant breast disease. In: Harris JR. (editor): *Diseases of the Breast*. Philadelphia, PA: Lippincott Williams & Wilkins; 2000, pp. 355–366.

65 Benz C. Transcription factors and breast cancer. *Endocrine-Related Cancer* 1998; **5**:271–282.

66 Hopp TA, Fuqua SA. Estrogen receptor variants. *J Mamm Gland Biol Neoplasia* 1998; **3**:73–83.

67 Kaufmann M, Bajetta E, Dirix LY, Fein LE, Jones SE, Zilembo N, et al. Exemestane is superior to megestrol acetate after tamoxifen failure in postmenopausal women with advanced breast cancer: results of a phase III

randomized double-blind trial. The Exemestane Study Group [Comment]. *J Clin Oncol* 2000; **18**:1399–1411.

68 Denis M, Gustafsson JA. Translation of glucocorticoid receptor mRNA *in vitro* yields a nonactivated protein. *J Biol Chem* 1989; **264**: 6005–6008.

69 Smith DF, Schowalter DB, Kost SL, Toft DO. Reconstitution of progesterone receptor with heat shock proteins. *Mol Endocrinol* 1990; **4**:1704–1711.

70 Dittmar KD, Banach M, Galigniana MD, Pratt WB. The role of DnaJ-like proteins in glucocorticoid receptor-hsp90 heterocomplex assembly by the reconstituted hsp90.p60.hsp70 foldosome complex. *J Biol Chem* 1998; **273**:7358–7366.

71 Kosano H, Stensgard B, Charlesworth MC, McMahon N, Toft D. The assembly of progesterone receptor-hsp90 complexes using purified proteins. *J Biol Chem* 1998; **273**:32973–32979.

72 Hubler TR, Denny WB, Valentine DL, Cheung-Flynn J, Smith DF, Scammell JG. The FK506-binding immunophilin FKBP51 is transcriptionally regulated by progestin and attenuates progestin responsiveness. *Endocrinology* 2003; **144**:2380–2387.

73 Riggs DL, Roberts PJ, Chirillo SC, Cheung-Flynn J, Prapanich V, Ratajczak T, et al. The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling *in vivo*. *EMBO J* 2003; **22**: 1158–1167.

74 Scherrer LC, Picard D, Massa E, Harmon JM, Simons Jr SS, Yamamoto KR, et al. Evidence that the hormone binding domain of steroid receptors confers hormonal control on chimeric proteins by determining their hormone-regulated binding to heat-shock protein 90. *Biochemistry* 1993; **32**:5381–5386.

75 Bouhouche-Chatelier L, Chadli A, Catelli MG. The N-terminal adenosine triphosphate binding domain of Hsp90 is necessary and sufficient for interaction with estrogen receptor. *Cell Stress Chaperones* 2001; **6**: 297–305.

76 Smith DF. Dynamics of heat shock protein 90–progesterone receptor binding and the disactivation loop model for steroid receptor complexes. *Mol Endocrinol* 1993; **7**:1418–1429.

77 Bresnick EH, Dalman FC, Sanchez ER, Pratt WB. Evidence that the 90-kDa heat shock protein is necessary for the steroid binding conformation of the L cell glucocorticoid receptor. *J Biol Chem* 1989; **264**:4992–4997.

78 Schowalter DB, Sullivan WP, Maihle NJ, Dobson AD, Connelly OM, O’Malley BW, et al. Characterization of progesterone receptor binding to the 90- and 70-kDa heat shock proteins. *J Biol Chem* 1991; **266**: 21165–21173.

79 Morishima Y, Kanelakis KC, Murphy PJ, Shewach DS, Pratt WB. Evidence for iterative ratcheting of receptor-bound hsp70 between its ATP and ADP conformations during assembly of glucocorticoid receptor-hsp90 heterocomplexes. *Biochemistry* 2001; **40**:1109–1116.

80 Murphy PJ, Kanelakis KC, Galigniana MD, Morishima Y, Pratt WB. Stoichiometry, abundance, and functional significance of the hsp90/hsp 70-based multiprotein chaperone machinery in reticulocyte lysate. *J Biol Chem* 2001; **276**:30092–30098.

81 Chen S, Prapanich V, Rimerman RA, Honore B, Smith DF. Interactions of p60, a mediator of progesterone receptor assembly, with heat shock proteins hsp90 and hsp70. *Mol Endocrinol* 1996; **10**:682–693.

82 Lassle M, Blatch GL, Kundra V, Takatori T, Zetter BR. Stress-inducible, murine protein mST1. Characterization of binding domains for heat shock proteins and *in vitro* phosphorylation by different kinases. *J Biol Chem* 1997; **272**:1876–1884.

83 Sullivan W, Stensgard B, Caucutt G, Bartha B, McMahon N, Alnemri ES, et al. Nucleotides and two functional states of hsp90. *J Biol Chem* 1997; **272**:8007–8012.

84 Dittmar KD, Demady DR, Stancato LF, Krishna P, Pratt WB. Folding of the glucocorticoid receptor by the heat shock protein (hsp) 90-based chaperone machinery. The role of p23 is to stabilize receptor-hsp90 heterocomplexes formed by hsp90.p60.hsp70. *J Biol Chem* 1997; **272**:21213–21220.

85 Chadli A, Bouhouche I, Sullivan W, Stensgard B, McMahon N, Catelli MG, et al. Dimerization and N-terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90. *Proc Natl Acad Sci USA* 2000; **97**:12524–12529.

86 Morishima Y, Kanelakis KC, Silverstein AM, Dittmar KD, Estrada L, Pratt WB. The Hsp organizer protein hop enhances the rate of but is not essential for glucocorticoid receptor folding by the multiprotein Hsp90-based chaperone system. *J Biol Chem* 2000; **275**:6894–6900.

87 Nair SC, Toran EJ, Rimerman RA, Hjermstad S, Smithgall TE, Smith DF. A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. *Cell Stress Chaperones* 1996; **1**:237–250.

88 Grammatikakis N, Lin JH, Grammatikakis A, Tsichlis PN, Cochran BH. p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. *Mol Cell Biol* 1999; **19**:1661–1672.

89 Beliakoff J, Bagatell R, Paine-Murrieta G, Taylor CW, Lykkesfeldt AE, Whitesell L. Hormone-refractory breast cancer remains sensitive to the antitumor activity of heat shock protein 90 inhibitors. *Clin Cancer Res* 2003; **9**:4961–4971.

90 Bagatell R, Khan O, Paine-Murrieta G, Taylor CW, Akinaga S, Whitesell L. Destabilization of steroid receptors by Hsp90-binding drugs: a ligand independent approach to hormonal therapy of breast cancer. *Clin Cancer Res* 2001; **7**:2076–2084.

91 Vanaja DK, Mitchell SH, Toft DO, Young CY. Effect of geldanamycin on androgen receptor function and stability. *Cell Stress Chaperones* 2002; **7**:55–64.

92 Solit DB, Zheng FF, Drobnyak M, Munster PN, Higgins B, Verbel D, et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. [see Comments]. *Clin Cancer Res* 2002; **8**:986–993.

93 Smith DF, Whitesell L, Nair SC, Chen S, Prapanich V, Rimerman RA. Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. *Mol Cell Biol* 1995; **15**:6804–6812.

94 Wallace AD, Cidlowski JA. Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. *J Biol Chem* 2001; **276**:42714–42721.

95 Whitesell L, Cook P. Stable and specific binding of heat shock protein 90 by geldanamycin disrupts glucocorticoid receptor function in intact cells. *Mol Endocrinol* 1996; **10**:705–712.

96 Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. *Science* 1991; **253**:49–53.

97 Lane DP. p53 and human cancers. *Br Med Bull* 1994; **50**:582–599.

98 Stenmark-Askmalm M, Stal O, Sullivan S, Ferraud L, Sun XF, Carstensen J, et al. Cellular accumulation of p53 protein: an independent prognostic factor in stage II breast cancer. *Eur J Cancer* 1994; **30A**:175–180.

99 Allred DC, Hilsenbeck SG. Biomarkers in benign breast disease: risk factors for breast cancer. *J Natl Cancer Inst* 1998; **90**:1247–1248.

100 Lai H, Ma F, Trapido E, Meng L, Lai S. Spectrum of p53 tumor suppressor gene mutations and breast cancer survival. *Breast Cancer Res Treat* 2004; **83**:57–66.

101 Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. *Nature* 1997; **387**:296–299.

102 Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. *Nature* 1997; **387**:299–303.

103 Wang C, Chen J. Phosphorylation and hsp90 binding mediate heat shock stabilization of p53. *J Biol Chem* 2003; **278**:2066–2071.

104 King FW, Wawrzynow A, Hohfeld J, Zyllicz M. Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53. *EMBO J* 2001; **20**:6297–6305.

105 Blagosklonny MV, Toretsky J, Bohen S, Neckers L. Mutant conformation of p53 translated *in vitro* or *in vivo* requires functional HSP90. *Proc Natl Acad Sci USA* 1996; **93**:8379–8383.

106 Whitesell L, Sutphin PD, Pulcini EJ, Martinez JD, Cook PH. The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. *Mol Cell Biol* 1998; **18**:1517–1524.

107 Finlay CA, Hinds PW, Tan TH, Eliyahu D, Oren M, Levine AJ. Activating mutations for transformation by p53 produce a gene product that forms an hsc70–p53 complex with an altered half-life. *Mol Cell Biol* 1988; **8**: 531–539.

108 Whitesell L, Sutphin P, An WG, Schulte T, Blagosklonny MV, Neckers L. Geldanamycin-stimulated destabilization of mutated p53 is mediated by the proteasome *in vivo*. *Oncogene* 1997; **14**:2809–2816.

109 Goonewardene TI, Sowter HM, Harris AL. Hypoxia-induced pathways in breast cancer. *Microsc Res Tech* 2002; **59**:41–48.

110 Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. *Nature* 1999; **399**:271–275.

111 Bos R, van der Groep P, Greijer AE, Shvarts A, Meijer S, Pinedo HM, et al. Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. *Cancer* 2003; **97**:1573–1581.

112 Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. *Cancer Res* 1999; **59**:5830–5835.

113 Kurebayashi J, Otsuki T, Moriya T, Sonoo H. Hypoxia reduces hormone responsiveness of human breast cancer cells. *Jpn J Cancer Res* 2001; **92**:1093–1101.

114 Mabjeesh NJ, Post DE, Willard MT, Kaur B, Van Meir EG, Simons JW, et al. Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. *Cancer Res* 2002; **62**:2478–2482.

115 Minet E, Motte D, Michel G, Roland I, Raes M, Remacle J, et al. Hypoxia-induced activation of HIF-1: role of HIF-1alpha–Hsp90 interaction. *FEBS Lett* 1999; **460**:251–256.

116 Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. *J Biol Chem* 2002; **277**:29936–29944.

117 Kurebayashi J, Otsuki T, Kurosumi M, Soga S, Akinaga S, Sonoo H. A radicicol derivative, KF58333, inhibits expression of hypoxia-inducible factor-1alpha and vascular endothelial growth factor, angiogenesis and growth of human breast cancer xenografts. *Jpn J Cancer Res* 2001; **92**:1342–1351.

118 Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. *Genes Dev* 1999; **13**:2905–2927.

119 Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. *J Biol Chem* 2002; **277**:39858–39866.

120 Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N. Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. *Cancer Res* 2003; **63**:2139–2144.

121 Xu W, Yuan X, Jung YJ, Yang Y, Basso A, Rosen N, et al. The heat shock protein 90 inhibitor geldanamycin and the ErbB inhibitor ZD1839 promote rapid PP1 phosphatase-dependent inactivation of AKT in ErbB2 overexpressing breast cancer cells. *Cancer Res* 2003; **63**:7777–7784.

122 O'Neill E, Kolch W. Conferring specificity on the ubiquitous Raf/MEK signalling pathway. *Br J Cancer* 2004; **90**:283–288.

123 Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. *Biochem J* 2000; **351**:289–305.

124 Schulte TW, Blagosklonny MV, Romanova L, Mushinski JF, Monia BP, Johnston JF, et al. Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1–MEK–mitogen-activated protein kinase signalling pathway. *Mol Cell Biol* 1996; **16**:5839–5845.

125 Mass RD. The HER receptor family: a rich target for therapeutic development. *Int J Radiat Oncol Biol Phys* 2004; **58**:932–940.

126 Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. *Science* 1989; **244**:707–712.

127 Liang K, Lu Y, Jin W, Ang KK, Milas L, Fan Z. Sensitization of breast cancer cells to radiation by trastuzumab. *Mol Cancer Ther* 2003; **2**: 1113–1120.

128 Xu W, Mimnaugh E, Rosser MF, Nicchitta C, Marcu M, Yarden Y, et al. Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. *J Biol Chem* 2001; **276**:3702–3708.

129 Supino-Rosin L, Yoshimura A, Yarden Y, Elazar Z, Neumann D. Intracellular retention and degradation of the epidermal growth factor receptor, two distinct processes mediated by benzoquinone ansamycins. *J Biol Chem* 2000; **275**:21850–21855.

130 Zhou P, Fernandes N, Dodge IL, Reddi AL, Rao N, Safran H, et al. ErbB2 degradation mediated by the co-chaperone protein CHIP. *J Biol Chem* 2003; **278**:13829–13837.

131 Parisot JP, Hu XF, DeLuise M, Zalcburg JR. Altered expression of the IGF-1 receptor in a tamoxifen-resistant human breast cancer cell line. *Br J Cancer* 1999; **79**:693–700.

132 Wen B, Deutsch E, Marangoni E, Frascona V, Maggiorella L, Abdulkarim B, et al. Tyrostatin AG 1024 modulates radiosensitivity in human breast cancer cells. *Br J Cancer* 2001; **85**:2017–2021.

133 Maloney A, Clarke PA, Workman P. Genes and proteins governing the cellular sensitivity to HSP90 inhibitors: a mechanistic perspective. *Curr Cancer Drug Targets* 2003; **3**:331–341.

134 Ferrarini M, Heltai S, Zocchi MR, Rugarli C. Unusual expression and localization of heat-shock proteins in human tumor cells. *Int J Cancer* 1992; **51**:613–619.

135 LeBlanc R, Catley LP, Hideshima T, Lentzsch S, Mitsiades CS, Mitsiades N, et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth *in vivo* and prolongs survival in a murine model. *Cancer Res* 2002; **62**:4996–5000.

136 Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm M, Fritz L, et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. *Nature* 2003; **425**:407–410.

137 Enmon R, Yang WH, Ballangrud AM, Solit DB, Heller G, Rosen N, et al. Combination treatment with 17-N-allylamino-17-demethoxy geldanamycin and acute irradiation produces supra-additive growth suppression in human prostate carcinoma spheroids. *Cancer Res* 2003; **63**:8393–8399.

138 Bisht KS, Bradbury CM, Mattson D, Kaushal A, Sowers A, Markovina S, et al. Geldanamycin and 17-allylamino-17-demethoxygeldanamycin potentiate the *in vitro* and *in vivo* radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity. *Cancer Res* 2003; **63**:8984–8995.

139 Blagosklonny MV, Fojo T, Bhalla KN, Kim JS, Trepel JB, Figg WD, et al. The Hsp90 inhibitor geldanamycin selectively sensitizes Bcr–Abl-expressing leukemia cells to cytotoxic chemotherapy. *Leukemia* 2001; **15**: 1537–1543.

140 Munster PN, Basso A, Solit D, Norton L, Rosen N. Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner. *Clin Cancer Res* 2001; **7**:2228–2236.

141 Sausville EA. Combining cytotoxics and 17-allylamino, 17-demethoxygeldanamycin: sequence and tumor biology matters. Commentary re: P. Munster et al., Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner. *Clin Cancer Res* 2001; **7**:2228–2236; Comment 2155–2158.

142 Nguyen DM, Lorang D, Chen GA, Stewart JH, Tabibi E, Schrump DS. Enhancement of paclitaxel-mediated cytotoxicity in lung cancer cells by 17-allylamino geldanamycin: *in vitro* and *in vivo* analysis. *Ann Thor Surg* 2001; **72**:371–378; Discussion 378–379.

143 Nguyen DM, Chen A, Mixon A, Schrump DS. Sequence-dependent enhancement of paclitaxel toxicity in non-small cell lung cancer by 17-allylamino 17-demethoxygeldanamycin. *J Thor Cardiovasc Surg* 1999; **118**:908–915.

144 McIlwraith AJ, Brunton VG, Brown R. Cell-cycle arrest and p53 accumulation induced by geldanamycin in human ovarian tumour cells. *Cancer Chemother Pharmacol* 1996; **37**:423–428.

145 Srithapakdi M, Liu F, Tavorah R, Rosen N. Inhibition of Hsp90 function by ansamycins causes retinoblastoma gene product-dependent G₁ arrest. *Cancer Res* 2000; **60**:3940–3946.

146 Arlander SJ, Eapen AK, Vroman BT, McDonald RJ, Toft DO, Karnitz LM. Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. *J Biol Chem* 2003; **278**:52572–52577.

147 McCollum A, Toft DO, Erlichman C. Geldanamycin enhances cisplatin cytotoxicity through loss of Akt activation in A549 cells. *Clin Cancer Res* 2003; **9**(suppl):6178s.

148 Vasilevskaya IA, Rakitina TV, O'Dwyer PJ. Geldanamycin and its 17-allylamino-17-demethoxy analogue antagonize the action of cisplatin in human colon adenocarcinoma cells: differential caspase activation as a basis for interaction. *Cancer Res* 2003; **63**: 3241–3246.

149 Kurokawa H, Lenferink AE, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT, et al. Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. *Cancer Res* 2000; **60**: 5887–5894.

150 Shang Y, Brown M. Molecular determinants for the tissue specificity of SERMs [Comment]. *Science* 2002; **295**:2465–2468.

151 Roodi N, Bailey LR, Kao WY, Verrier CS, Yee CJ, Dupont WD, et al. Estrogen receptor gene analysis in estrogen receptor-positive and receptor-negative primary breast cancer. *J Natl Cancer Inst* 1995; **87**:446–451.

152 Mimnaugh EG, Xu W, Vos M, Neckers LM. Targeting the Hsp90 molecular chaperone while inhibiting proteosomal proteolysis promotes protein ubiquitination, produces prominent ER-derived cytosolic vacuolization and provokes additive antitumor activity. *Clin Cancer Res* 2003; **9**(suppl):6245s.

153 Mitsiades CS, Mitsiades N, Richardson PG, Treon SP, Anderson KC. Novel biologically based therapies for Waldenstrom's macroglobulinemia. *Semin Oncol* 2003; **30**:309–312.

154 Rahmani M, Yu C, Dai Y, Reese E, Ahmed W, Dent P, et al. Coadministration of the heat shock protein 90 antagonist 17-allylamino-17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. *Cancer Res* 2003; **63**:8420–8427.

155 Yu X, Guo ZS, Marcu MG, Neckers L, Nguyen DM, Chen GA, et al. Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. *J Natl Cancer Inst* 2002; **94**:504–513.

156 Sausville EA, Tomaszewski JE, Ivy P. Clinical development of 17-allylamino, 17 demethoxygeldanamycin. *Curr Cancer Drug Targets* 2003; **3**:377–383.

157 Egorin MJ, Lagattuta TF, Hamburger DR, Covey JM, White KD, Musser SM, et al. Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats. *Cancer Chemother Pharmacol* 2002; **49**:7–19.

158 Chiosis G, Lucas B, Shtil A, Huezo H, Rosen N. Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. *Bioorg Med Chem* 2002; **10**:3555–3564.

159 Aherne W, Maloney A, Sharp S, Clarke P, Walton M, Hardcastle A, et al. Discovery of a novel synthetic inhibitor of the hsp90 molecular chaperone. *Proc Am Ass Cancer Res* 2003; **44**:915–916.